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Abstract

Based on the construction of Fractal Interpolation Functions, a new construction of Fractal Interpolation
Surfaces on arbitrary data is presented and some interesting properties of them are proved. Finally, a lower
bound of their box counting dimension is provided.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Fractal Interpolation Surfaces (FIS) are usually constructed as graphs of continuous func-
tions with the help of Iterated Function Systems (IFS) or Recurrent Iterated Function Systems
(RIFS). However, their construction encounters some difficulties that have not yet been over-
come. Several constructions have been introduced that confront these problems. Most of them
take the interpolation points on a triangular grid and use affine mappings that define an IFS (see
[11,13,15]), thus the emerging surface is self-affine. In addition, they constrain the interpolation
points (to be coplanar at the boundary of the triangular region) or the contraction factors of the
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affine maps (all contraction factors should be equal). Hence, these constructions lack the flexi-
bility needed to model complex natural surfaces. In [9] and [12] bivariate functions were used to
address the problem on a rectangular grid. This approach was generalized and extensively studied
in [5] and [7] where RIFS were used. In the same paper the box-counting dimension of the FIS
was explicitly computed. The latter construction, however flexible may be, still constrains the
interpolation points and the contraction factors.

In this paper we construct fractal interpolation surfaces as graphs of continuous functions
on arbitrary data points (placed on rectangular grids) using fractal interpolation functions. This
construction enables the control of the box dimension of the fractal surface, giving a lower bound
of it, independently of the interpolation points. One may produce a fractal interpolation surface
as rough as he wants it to be. The mathematical background on IFS, RIFS and FIF together with
a lemma concerning the stability of FIF is given in Section 2. In Section 3 we describe the new
construction in detail and prove some interesting properties. Finally, in Section 4 we give a lower
bound for the box-counting dimension of the FIS produced by the aforementioned construction.

2. Fractal Interpolation Functions
2.1. IFS-RIFS

A hyperbolic Iterated Function System, or IFS for short, is defined as a pair consisted of
a complete metric space (X, p) together with a finite set of continuous contractive mappings
w; : X — X, with respective contraction factors s; fori =1,2,..., N (N > 2). The attractor of
a hyperbolic IFS is the unique set E for which E = limy_, o, W¥(A() for every starting compact
set Ag, where

N
W(A) = Jwi(4) forall AeH(X),
i=1
and (H(X), h) 1s the metric space of all nonempty compact subsets of X with respect to the
Hausdorff metric A. Iterated Function Systems are able to produce very complicated attractors
using only a handful of mappings.

A more general concept, that allows the construction of even more complicated sets, is
that of the Recurrent Iterated Function System, or RIFS for short, which consists of the IFS
{X;w;, i=1,2,..., N} (ormore briefly {X; wi_x}) together with an irreducible row-stochastic
matrix (p, m €[0,1]: n,m=1,..., N), such that

N

Y pum=1, n=1...N. (1)

m=1

The recurrent structure is given by the (irreducible) connection matrix C = (Cpm)™ which is
defined by

coo_ 1, if ppn>0,
e O’ if pm,n :O’
where n,m = 1,2, ..., N. The transition probability for a certain discrete time Markov process

1S pn.m, which gives the probability of transfer into state m given that the process is in state n.
Condition (1) says that whichever state the system is in (say 7), a set of probabilities is available
that sum to one and describe the possible states to which the system transits at the next step.
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We define mappings

w;(A), pji>0,

g pii =0, (2)

Wi i H(X) — H(X), with W; ;(A) = !

for all A € H(X) and the metric space
HX) =HX)N = H(X) x H(X) x -+ x H(X)

equipped with the metric

Aq By

~ A B2

h A I =max{h(A;, B)); i=1,2,...,N}.
AN By

Easily we can prove that (ﬁ , fz) is a complete metric space. Now, we define the map

Ay Wi Wi ... W Aq
- - Ar Wor Wa ... Won Ar
W H(X)—>H(X): W . = . . . . .
AN Wni Wao ... Wypy AN
Ujel(l) wi(Aj)
Uje](2) w2(Aj)

)

UjeI(N) wy(Aj)
where I (i) ={j: pji >0},fori =1,2,..., N.If all w; are contractions, then W is a contraction
and thereisan E = (E{, Ea, ..., En)' € 7:((X) such that W(E) = FE and E; = Ujel(i) w; (Ej),
fori=1,2,...,N.

Let A € H(X). We define sequences {A;},eN In 7:l(X) and {A,}nen In H(X) as follows:
Ag=(A,A,....,A), A, =W(A,_)) and A, = UlN:l(An),-, for n € N where A,, = ((A,)1,
(Ap)2,...,(A,)N). Then, the set G = UINZl E; is called the attractor of the RIFS {X, wi_y, P}.
Evidently

G =limA,.
n

2.2. Fractal Interpolation Functions and their stability

Barnsley in [3] was the first to introduce Fractal Interpolation Functions (FIFs) that are
derived as attractors of IFSs or RIFSs and interpolate given data points. Here we briefly de-
scribe this construction based on RIFSs as we will use it in our method (for further details
see [1-3]). Let X =[0,1] x Rand A = {(x;,y;): i =0,1,..., N} be an interpolation set with
N + 1 interpolation points such that 0 = x¢p < x; < --- < xy = 1. The interpolation points di-

vide [0, 1] into N intervals I; = [x;—1,x;],i =1, ..., N, which we call domains. In addition, let
QO ={(x;,y)): j=0,1,..., M} be a subset of A, such that 0 =Xy <X; <--- <Xy =1. We,
also, assume that for every j =0, 1,..., M — 1 there is at least one i such that )?j <x < £j+1.

Thus, the points of Q divide [0, 1] into M intervals J; = [X;_1,X;], j =1,..., M, which we
call regions. Finally, let J be the labelling map such that J:{1,2,..., N} — {1,2,..., M} with
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domain domain  domain  domain

1 2 3 4
A L
Rn:%iun RE%ian
1/2 0 0 1/2 1 1 0 O
. 1/2 0 0 1/2 _ 0 0 1 1 _
0 /2 1/2 0 1 1 0 0

Fig. 1. In the above figure, the set A consists of five interpolation points, while the set Q consists of three points. The
stochastic matrix, the connection matrix and the connection vector are shown below the figure.

Ji)=j.Letx; —xj_1=6;,i=1,2,...,N, and )2]' —)2]'_1 ij, j=1,2,...,M. It is ev-
ident that each region contains an integer number of domains. In the special case where the

interpolation points are equidistant (thatis x; —x;—1 =6,i=1,2,...,N,and X; — X;_1 =V,
j=1,2,..., M), each region contains exactly « = 1//§ € N domains.
We define N mappings of the form:
X L;(x) ) .
w; = , fori=1,2,..., N, 3
(y> (Fi(xay) )

where L;(x) =a;x + b; and Fj(x, y) =s;y + gi (x) where g;(x) is a polynomial. Each map w;
is constrained to map the endpoints of the region Jj(; to the endpoints of the domain /; (see
Fig. 1). That is,

w; (AH) — (xi—1>, w; (xf) = (""), fori=1,2,...,N. )
Yj-1 Yi—1 Yj Yi

Vertical segments are mapped to vertical segments scaled by the factor s;. The parameter s; is
called the contraction factor of the map w;.

It is easy to show that if |s;| < 1, then there is a metric d equivalent to the Euclidean metric,
such that w; is a contraction (i.e., there is §;: 0 < §; < 1 such that d(w; (X), w; () < §;d (X, y),
see [4]).

The N x N stochastic matrix (p,,)" is defined by

L if 1, C Ty,
Pnm = .
0, otherwise,

where y, is the number of positive entries of the line n, n = 1,2, ..., N. This means that p, ,,
is positive, iff there is a transformation L,,, which maps the region containing the nth domain
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(i.e. I) to the mth domain (i.e. I,,,). Let us take a pointin [, x R, i =1, ..., N. We say that we
are in state n. The number p,,, shows the probability of applying the map w,, to that point, so
that the system transits to state m. Sometimes, it is more efficient to describe the matrix ( Pam)Y
through the connection matrix C = (cum)™ or the connection vector V, which is defined as
follows:

c _ 15 pmn > Oa
"0, otherwise,

V=(J(),IQ2),....J(N)).

Next, we consider (C([xg, xn]1), || - lloo), Where ||@|cc = max{|¢(x)|, x € [xp, xn]} and the
complete metric subspace Fo = {g € C([x0, xn]): g(x;) =y;, fori =0,1,..., N}. The Read—
Bajraktarevic operator Tx, g : Fa — Fa 1s defined as follows

(Ta,08)x) = F; (L7 (), g(L7'(0))), forx e€[xi—1,xi], i=1,2,...,N.

It is easy to verify that T4 o g is well defined and that T4 ¢ is a contraction with respect to the
P = - |loo metric. According to the Banach fixed-point theorem, there exists a unique f € Fx
suchthat Ta, o f = f.1f fo is any interpolation function and f, =T} , fo, where T} 5 =Tx, 00
Ta,go---0Tx, 0, then (fy)nen converges uniformly to f. The graph of the function f is the
attractor of the RIFS {X, wi_p, (p; j)N } associated with the interpolation points (see [4]). Note
that f interpolates the points of A for any selection of the parameters of the polynomials p; that
satisfies (4). We will refer to a function of this nature as Fractal Interpolation Function (FIF). In
[14] it is shown that FIFs (based on IFS) generalize the Hermite-type interpolation functions.

Let us consider the case where the w; are affine:

AxX\_( Lix) \_(a O\ (x e .
()= (20)=( O)(5)+ (%) wimtem 6

Here, p;(x) = ¢;x + f;. The FIF that corresponds to the above RIFS is called affine FIF.

From Eq. (4) four linear equations arise, which can always be solved for a;, c;, e;, f; in terms
of the coordinates of the interpolation points and the vertical scaling factor s;. Thus, once the
contraction factor s; for each map has been chosen, the remaining parameters may be easily
computed (see [4]). Figures 2 and 3 show some examples of affine FIF.

We will prove that if the interpolation points of two distinct FIFs are “almost equal,” then the
values of the corresponding FIFs will, also, be “almost equal.”

Lemma 1. Consider X = [0, 1] x R, the sets Ay = {(x;,y;), i =0,1,..., N}, Ay ={(xi, Vi),
i=0,1,..., N} and the corresponding sets Q1 = {(Xj,y;), j=0,1,..., M}, Q» = {(%}, y:j),
j=0,1,...,M}. In addition, let f, g be the attractors of the RIFSs associated with
the points Ay, Q1 and As, Q», respectively, with the same choice of contraction factors

Is1l, [s2], ..., |sn| < 1 and stochastic matrix (pnm)N. If|yi —yil<e,i1=0,1,..., N, for some
€ >0, then
€ (1 + Smax)
g — flloo S ———
* (1 — Smax)
where Smax = max{|s;|, i=1,2,..., N}

Proof. For x € I; we have that
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Fig. 2. The two FIFs shown above interpolate the points of the same set A (consisting of six points). The difference is
due to the selection of two distinct stochastic matrices.

|g(x) = ()| =|(Tay,0,8)(x) = (Ta,, 0, /X))
=[sig(L; ') + pio L7 () —si f(L71 (%)) — pi o L7 (%)
<Isillg (L7 0)) = LT @)+ [ pio L7 (%) — pio LT ().

The functions p; o Ll._l, pi o Ll._1 are polynomials of degree one defined on /;, where

pi(Xj—1) =Yi—1—8iyj—1,
pi(Xj) =yi —si¥j,
Pi(Xj—1) =Yi—1 —SiVj-1,

pi(Xj)=yi —siy;.
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Fig. 3. The sequence f; for the RIFS associated with the interpolation points A = {(0, 12), (0.6, 10), (1, 11)},
0 ={(0,12), (1, 11)} and the contraction factors s; = —0.4, so = 0.7. (a) fp, (b) f1, (©) f6.
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Therefore, we may easily deduce that
|Bio L () = pio L7 ()| < (1 +Isil)e,
for x € I;. Hence,

lg(0) — f)| < Isil|g(L71 ) = FILT )| +e(1 +1si1),

for x € I;. From this relation we deduce the result. O
3. Fractal Interpolation Surfaces derived from Fractal Interpolation Functions
3.1. The construction

In this section we give a new construction that uses FIF to construct FIS on a rectangular
grid of arbitrary interpolation points. We prove that the constructed surface is the graph of a
continuous function.

Consider the interpolation points A = {(x;, y;,z;j): i =0,1,...,N;j=0,1,..., M} C
[0,1] x[0,p] x RwithO=xg<x1<---<xy=1,0=yy<y; <---<yy =p and
Xi—Xxi—1=206;,i=0,1,..., N=1Ly;—yj_1 ZSj,jZO,l,...,M—l LetS—{s1 82, ... SN}
S = (51,52, ...,5u) be two sets of contraction factors and let P = (pun)™, P = (Pum)™
two stochastic matrices with dimensions N x N and M x M, respectlvely Also let Q =
{Gr, V1, 2k1): k=0,1,...,K;1=0,1,. L}beasubsetofAsuchthatxo_O xx =1, yo_O
yL_pandxk—xkl_wk,yz—yl1_1m,k 0,1,....K,1=0,1, ..., L.Let J and J be
defined as in Section 2.2 associated with the matrices P and }3, respectively, with J(i) = k,
j(j) = [. The points {xg, x1,...,xn} divide [0, 1] into N domains Iy, I, ..., Iy, while the
points {yo, y1, ..., ym} divide [0, p] into M domains I 1, fz, cee, I, m - Consequently, the points
{X0, X1, ..., Xk} divide [0, 1] into K regions Ji, Jo, ..., Jx, while the points {yo, y1,..., YL}
divide [0, p] into L regions fl, fz, e J, . In addition, we define the mappings

I:{0,1,...,K}— {0, 1,..., N},
[:40,1,...,L} > {0,1,..., M}

such that X; = xy) and 3; = Yig)-

We consider arbitrary continuous functions u;, that interpolate the sets A~x,» = {(xi, yj, zij):
j=0,1,...,M}, for i =0,1,..., N (see Fig. 4). Then, for y € [0, p], we construct a
RIFS associated with the interpolation points Ay, = {(x;,y,u;(y)): i =0,1,...,N}, Q) =
{(Xk, y, uik)(y)), k=0,1,..., K}, the set of contraction factors S together with the matrix
P, which produce a FIF fy : [0, 1] — R (see Fig. 4). We define the function

F:[0,1] x [0, p] = R such that F(x, y) = fy(x).

Similarly, we consider arbitrary continuous functions vj, that interpolate the sets A,
{(xi,yj,zij): i=0,1,...,N} for j =0,1,..., M. As before, for x € [0, 1] we construct a

RIFS associated with the interpolation pomts Ax ={(x,yj,v;j(x): j=0,1,..., M}, O, =
{(x, 1, ith (x)), I =0,1,..., L}, the set of contraction factors S together with the matrix P,

which produce a FIF fx : [0, p]l — R. Thus, we define the function
F:[0,1] x [0, pl — R such that F(x, y) = fx(y).

The functions F, F interpolate the data A. We will prove that F, F are continuous functions.
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30 —

20 —

(b)

Fig. 4. An example of the construction of the function F is shown (see Table 1). (a) The points of A, where N = M =8,
p = 1. (b) The nine interpolation functions ug, u1, ..., ug. (c) One of the FIFs fy (shown by the arrow). (d) The graph
of the function F.

Proposition 1. The functions F, F are continuous.

Proof. We will prove that F is continuous. We claim that the set 7 = {f): y € [0, p]} C

C([0, 1] (as in our construction) is compact in (C([0, 1]), || - |lco). To prove this claim we
consider (fy,)neN to be a sequence in F. As (yn)neN 18 a sequence of [0, p] there exists a
subsequence with lim,_, yx, = yo € [0, p]. Then lim,, oo u; (yx,) = ui(y0), i =0,1,..., N,
and by Lemma 1 it holds that limy,, o0 fy, = fy, With respect to the || - [|c metric. Hence F is

sequentially compact in C ([0, 1]) and therefore F is compact.
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Fig. 4. (continued)

Thus the family F is equicontinuous in C ([0, 1]) at each point xg € [0, 1] (i.e. for € > O there
exists § > 0 such that if |[x — xo| < § then | fy (x) — fy(x0)| < € for any y € [0, 1]). (For the proof
see [8, p. 164].) Let (x*, y*) € [0, 1] x [0, p] and € > 0. The function F(x*, -) is continuous at
y* as

|F(x*, yn) — F(x*, y*)| = |fyn (x*) — fy (x*)| < Sy, — fylleo
andlim,_.¢ fy, = fy*, forlim,_.oy, = y*.Let§; > O be such that [ F (x*, y) — F (x*, y*)| < €/2,
if |y — y*| < 1. As F is equicontinuous at x*, there exists 6, > 0 such that if |x — x™| < &7,
then |F(x,y) — F(x*,y)| < €/2, for any y € [0, p]. Hence for (x,y) € [0, 1] x [0, p] with
|x —x*| + |y — y*| < min{d1, 87} we obtain

|F(x,y) — F(x*, y*)| < ‘F(x, y) — F(x*,y)| + |F(X*, y) — F(X*, y*)| <e€.

Hence F is continuous at (x*, y*). O
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Table 1

The interpolation points, the contraction factors and the connection vectors used for the surface of Fig. 4

A

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

y 0 15 12 08 17 11 15 08 14 06
0.125 09 17 14 19 08 11 16 09 13
0.25 12 06 13 08 18 14 06 15 09
0.375 17 11 05 14 09 14 10 08 17
0.5 08 14 09 16 11 05 14 19 09
0.625 15 10 17 08 16 14 06 12 11
0.75 09 14 06 15 09 06 11 08 12
0.875 15 07 18 09 14 11 07 15 09
1 11 16 13 15 07 11 16 09 05

The points of Q are shown with bold letters.
Sx = {0.6,-0.6,0.7, -0.5,0.5,-0.7,0.6, 0.8}, S, = {-0.7,0.6, -0.6, —0.6, —0.6,0.7, —0.5,0.7},
V)C = (17 1727 19 1123 25 1)9 Vy = (1729 1125 152727 1)’ w 248'

Figure 5 shows some examples of the above construction using arbitrary data points.
3.2. A notable result

In the general case, where u;, v; are arbitrary continuous functions interpolating the sets A x;
and ij, i=0,1,....,N, j=0,1,..., M, respectively, the functions F and F are distinct.

We draw special attention to the case where u;, v; are affine fractal interpolation func-
tlons constructed as we describe below. The RIFS associated with the 1nterp01at10n points

Ay ={(xi,yj,2zi5): J=0,1,..., M}, Qx, ={(x;, V1, 2, ]I(l)) [=0,1,..., L}, the set of con-

traction factors S together with the stochastic matrix P produces a FIF u; : [0, p] — R (see
Fig. 4), for all i =0, 1,..., N. Similarly, the RIFS associated with the interpolation points
Ay, = {(xi,yj,zip): 1 =0,1,..., N}, Oy, = {(F, yj,z1),j): k =0,1,..., K}, the set of
contraction factors § together with the stochastic matrix P produces a FIF v; : [0, 1] — R,

j=0,1,...,M. Bvidently, f, =u;, i =0,1,...,N and f,, =v;, j =0,1,..., M. In this
case the two functions F and F are coincide, as stated in the following proposition.

Proposition 2. If in the construction of F, F described as in Section 3.1, u; are the affine FIFs
associated with Ay, Qx;, S, P, i =0,1,..., N, and v; are the affine FIFs associated with ij,
Qy;, S, P, j=0,1,...., M, then

F=F.

Proof. Let {[0, 1], wy 1_n, P} be the RIFS whose attractor is the graph of the affine FIF f),
where

we (¥ Lit) ) _ Li(x)
Vi z - Fy,i(x’ Z) - SiZ+ Qy,i(x)

and {[0, p], Wy 1—Mm, 15} be the RIFS whose attractor is the graph of the affine FIF fx, where

SO
Y\ z xj(y Z) SjZ+CIx,j(y) ’
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(b)

Fig. 5. Two more continuous surfaces that interpolate a set of 9 x 9 interpolation points.

forx €e[0,1],ye[0,pl,zeR,i=1,2,...,N, j=1,2,..., M. Then the following functional
equations hold

@) =Fy(L7 @), (L)), 6)
Fe ) =Fe i (L7 ), A(L7' ), (7)

forxel,yel;,i=1,2,....,N,j=1,2,..., M.

Consider the RIFS {[0, 1], Li—n, P}, L = (L1, L>, ..., Ly) the map defined on H([O, vy
(as W in Section 2), the set Ag = {xo, X1, ..., xny} C H([O, 1]) and the sequence {A, },en defined
as in Section 2. The attractor of the RIFS is the set [0, 1] = lim, A,. Similarly, we define the
RIFS {[0,11, Li—um, P}, L = (Ly, Lo, ..., Ly) the map defined on H([0, p])V, the set Ag =
{vo, ¥1, .-, ym} C 'H([O, p]) and the sequence {A,}sen. The attractor of the latter RIFS is the
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set [0, p] = lim,, An. We may easily deduce that

N M
A, = U Li(Ap—1NJyi) and An = U ij(An—l N jj(j))'
i=1 j=1

Evidently for n =0,
fe) = fy(0) = F(x, y), ®)

for any (x, y) € (Ao x [0, p]) U ([0, 1] x Ao).
We assume that (8) holds for any (x, y) € (A4, x [0, p]) U ([0, 1] x A,,). Then, we will show
that (8) holds for (x, y) € (A,+1 x [0, p]) U ([0, 1] x A~n+1).
To prove the latter we use induction. For m = 0, Eq. (8) holds for (x, y) € (A,4+1 X Ap) U
(Ag x An—i—l) C ([0,1] x Ag) U (Ag x [0, p1). Assuming that (8) holds for (x,y) € (Ay41 X
m) U (A, X An+1) we will prove that it holds for (x, y) € (An+1 X Am+1) U (Ap+1 X An+1)
Leterl,yel Then, x* =L; (x)eJk and y* = (y)e]; As (x*, y)e(A X
A1) U(An X Ani1) € (Ay x [0, pD) U(Ay xAn+1>and<x V) € (An X Ap) U(Ap X Ay) €
(Ap41 X A m) U (A, X An+1) we have that
feM =) =F@"y) and  for () = fir(x7) = F(x*, 7).

Therefore we obtain:

[ =Fyi(L 00, (L7 ))

= Fyi(x" £y (x"))

= si fy(x*) + gy,i (x*)

=5 F(x*, y) + gy,i (x¥)

=5 fur (y)+61yi( )

=s5iFer j (L7, fer (LT ))) + gy (x)

=5 Foe j (5", foe (v7)) + 45,0 ()

= Sifjf}*(y ) +siGxe,j (V) + qy,i (x7)

=55 F(x*, ") +8iGxr,j (v*) + 4y.: (x¥).

We note that ¢, ;, t € [0, 1] and g, ;, t € [0, p] are polynomials of degree one, where

qr.i Ck—1) = fr(xi—1) = si frGe—1),  qr.i %) = fr(xi) — si fi (), fort €0, p],
Gr,iGi—) = fi(yi—) =5 fiGi=), @G0 = fi(y)) =35, fi(G), forte[0,1],

i=12,....,.N,j=1,2,....M 3
Therefore, considering that f; (x;) = u; (t) = fx, () Vt € [0, p], we get:
. X% — X1 . .
qt.i (X*> =qr,i (Xk—1) + T(Qt,i(xk) - Qz,i(xk—l))
X
A w ~ A
= fi(xi—1) — si fr (Xk—1) + I/I—x(fz(xi) — i fr(Xr) — fi(xiz1) + i fi (Fk=1))
X
=F(xi—1,1) — 5i F(Xg_1,1)

+ %(F(xi,t) —5i F(RXk, 1) — F(xi—1, 1) + 5; F (X1, 1))

X
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(1— %)fx; 1 (1) — ( 1”_>ka 1(I)+ " = fa () — 1//); fa @

and similarly

ét,j(y*)=<1—%>F(f,yj—1)—§j< 1/}y>F(t Vi 1)+Wy

w ~
— 52 F(t, ),
vy

F(t, y])

for t € [0, 1], where wy = x* — Xi—1, @y = y* — Y11, ¥ = Vi, ¥y = Y.
In addition, with the help of Eq. (10), we obtain

Fu ) = Fe j (5", fu (v5)) = 55 F (xi,5%) + G 5 (%)
=§jF(Xi,y*)+<1—w—)F(x,,yj 1) — (1_w_)F(xt’yl 1)

y y

+_F 1y F 1>
v (xi, yj) — wy (xi, 31).

We obtain similar relations for fo ), f);k_l (y), f)gk (y).
Thus, the value of fy(x) is

)

(10)

fy(x):s,-EJ-F(x*,y*)—f—&s,F(x y,) &siEjF(x*,ﬁl)—i—(1—%>siF(x*,yj_1)

y

Wy I:0)’

S; SJF(X Vi— 1) + (1 — %)§jF(xi_1,y*)

y R w w A
sist(xk_l,y*) — (1 — w—x) (1 - w_y>SiF(xk—l, )’j—l)
X

Yy

(1-%)
(1-3)
+ (1 - %)fmi_l, yi) - (1 - ‘;—) PRI
(1-5:)
(1-3:)
(-3)

(12
X y wy
wx(l w) P, i) + 25 E F g, ) = 258 F (i)
_ ox Wy X;, A Xi, S Xiy
A P ) g B
— %SiEjF()eka ) = %(1 N wy)S’F(xk Yi=1)
1— 22 )5 F — RIS E g
%( %)s §j F (Xk, Yi-1) 7 Wys B 3) lﬂx vy

Working similarly we obtain the same relation for fy(y).
Thus, relation (8) holds for (x, y) € (A,4+1 X Am) U (A, X An+1) m € N. Since

(1 _ ﬂ)ﬁ-F(& 51 — (1 _ &> ©y i F )
I/Iy i) k—1s YI—1 Ve wy i k—15Yj

;)SIS]F(-XIC 1 yz)—l—w—st(xi,y*) 7 (1——>F(xz,y] 1)

( 1/Iy>F(XI 1,Yj— 1)_<1_1/f_y)(1_E>SJF(XI 1> yl 1)
w

SlS]F(xk Vi)-
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oo oo
limA, =) A =101, limA, = | An=10, pl,
m=1 m=1

and F, F are continuous, we may deduce that (8) holds for (x, y) € (A,+1 x [0, p]) U ([0, 1] x
n+1) Thus, by induction, (8) holds for (x, y) € (A, x [0, p]) U ([0, 1] x A,) and any n € N.
Therefore, it holds for (x, y) € [0, 1] x [0, p]. O

4. Lower bound of the dimension of the Constructed Fractal Surfaces

We will prove a general result that gives a lower bound for the box-counting dimension of
the graph of a continuous function, if a lower bound of the box-counting dimension of its plane
sections is known.

If E is a bounded set in R", then the §-parallel body of E is the set of all points at a distance
less than § from E, i.e.,

E@)=E+38B,={x eR": 3y € E with ||x — y|| <},

where § > 0 and B, = B(0, 1) the closed unitary sphere of R"” with center at 0. Denoting the
volume by V,,, we get the lower and upper box-counting (Minkowski—Bouligand) dimension,
respectively,

log V,(E (S
dimg(E)=n — 1imsupw
50+ logé
—_ log V,,(E (S
Gimp(E) = n — liminf 22 /2 (E®)
§—0F logé

(see [10]), and if dimp (E) = dimp (E) we write dimp (E).

Proposition 3. Let F : [0,1] x [0, p] — R be a continuous function, Fy its restriction on
[0, 11 x {y} and G F, G, their graphs for y € [0, p]. If dimp(G F,) = s for almost all y € [0, p],
then dimp(GFr) > s + 1.

Proof. We restrict the Lebesgue measure V3 on [0, 1] x [0, p] x R and the V5 on [0, 1] x R. The
continuity of the function F* ensures the measurability of the function 2(8, y) = V2(GF, + 6 B2),
y €10, p], § = 0. From Fubini’s theorem we have that

|
V3(GF +8B3) =/V2(GFy +48B2)dy, (11)
0

for 6 > 0. In addition, using Jensen’s inequality we obtain

1

1
log/VZ(GF), +8B3)dy Zflog Vz(GFy +8By)dy, (12)
0 0

for § > 0. Let §,, > 0 be a sequence with lim,, §, = 0. For all y € [0, p] we have
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log V2(GF, + 8, B2)
: <2
log é,

9

for n > ngp(y).
In view of Fatou’s lemma and the relations (11), (12) we have

 logV3(Gr+8,B)dy . log [y Va(GE, +8,B)dy
lim sup = lim sup
n 10g8n n 10g5n
1
logVo(GF, +6,B
<flimsup( gVa(GF, +n 2))dy
/ n log é;,

1

<2- fdi_mB(GFy)dy
0
<2 —s (from the hypothesis).

Therefore,

logV3(G ¢+ 8B
dimpg(GF) =3 — limsup 0g V3(Gy +9B3)

>23—-2—-s5)=1+s. O
3—0t logs

Remark 1. One may prove that the function (3, y) = V2(GF, + 3 B2) used above is actually
continuous.

We will use the above result to derive a lower bound of the box-counting dimension of FIS
constructed as in Section 3.1.
Let f be an affine recurrent FIF given by {[0, 1], w;_x, P} with irreducible connection matrix
C and graph G s. Let
S(d) =diag{lsilay’ ™", Is2la; ", .. snlay ')

(diagonal matrix) and D be the unique value so that p(S(D) - C) =1 (p(-) is the spectral radius
of the matrix). If p(S(1)-C) > 1 and the interpolation points contained in J; x R are not colinear
forall k=0, 1,..., K, then the box-counting dimension of the graph G ¢ is

dimp(G ) =D,

otherwise dimp (G y) = 1 (see [2]). In the special case, where the points of A and the points of Q
are equidistant (i.e. x; — x;—1 =8, Xy — Xx—1 = V), the box counting dimension is given by

D =1+1log,(p(S(1)-C)),

where o = ¥//4.
Consider the construction presented in Section 3.1. If there is an index jo € {0, 1, ..., M}
such that dimp (G h ) = D1 > 1, then there is a subinterval of [0, p] of positive length, such
-JO

that dimp (G f,) = Dy, for any y in the interval. Therefore by Proposition 3
dimp(Gr) > 14 Dy > 2.
Similarly if there is ip € {0, 1, ..., N} such that dimp (Gfxio) = D, > 1, then there is a subinter-
val of [0, 1] of positive length, such that dimp (G 7. ) = Dy, for any x in the interval. Therefore
dimg(Gz) =1+ Dy > 2.
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Fig.6.AC ! fractal interpolation surface.

In the case where u;, v; (i =1,2,...,N, j=1,2,..., M) are affine FIFs with box-counting
dimensions Dp and D;, respectively, we have

dimp (G ) =dimp(G ;) > max{l + Dy, 1 + D»}.

5. Conclusions

The construction we describe in the above sections may be applied to arbitrary interpolation
points. The emerging surface is the graph of a continuous function that interpolates the data. In
Table 1 the data for the construction of the surface shown in Fig. 4(d) are given. Figure 5 shows
two more continuous surfaces. One may observe the roughness of the produced surfaces shown
in the figures.

We should note that this construction may be generalized to construct fractal interpolation
functions defined on [0, 1]”, n € N, that interpolate arbitrary data (placed in rectangular grids).
It would be interesting to see if the result presented in Section 3.2 holds in that case also. In
addition, if we choose u;,i =0, 1, ..., N, tobe C! functions (e.g. splines) and construct f) using
Hermite-type polynomials (as in [14]), we may construct smooth FIS that generalizes spline
surfaces (see [6] and Fig. 6).
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